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This paper describes the design process for the control system of a next generation geared 
turbofan engine. This concept engine simulation is representative of a 30,000 lbf thrust class 
engine with two main spools, an ultra-high bypass ratio, and a variable area fan nozzle. 
Control system requirements constrain the non-linear engine model as it operates throughout 
its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach number. The purpose of this 
paper is to review the engine control design process for an advanced turbofan engine 
configuration. The control architecture selected for this project was developed from literature 
and reflects a configuration that utilizes a proportional integral controller with sets of limiters 
that enable the engine to operate safely throughout its flight envelope. Simulation results show 
the overall system meets performance requirements without exceeding operational limits. 

Nomenclature 
AGTF30    Advanced Geared Turbofan 30,000 
FMV     Fuel metering valve 
HPC     High pressure compressor 
HPT     High pressure turbine 
LPC     Low pressure compressor 
LPT     Low pressure turbine 
MN     Mach number 
OPR     Overall pressure ratio 
PI     Proportional integral 
PLA     Power lever angle 
PR     Pressure ratio 
SLS     Sea level static 
SM     Stall margin 
TIT     Turbine inlet temperature 
Ts     Settling time 
TSFC     Thrust specific fuel consumption 
T-MATS    Toolbox for the Modeling and Analysis of Thermodynamic Systems 
VAFN     Variable area fan nozzle 
VBV     Variable bleed valve 
N1     Low pressure shaft speed 
N2     High pressure shaft speed 
Nf     Fan shaft speed 
Nfc     Corrected fan shaft speed 
Ps3     Static pressure at engine station 3 
T45     Temperature at engine station 45 
W     Mass flow 
Wc     Corrected mass flow 

                                                           
* Aerospace Engineer, 3000 Aerospace Parkway, Brook Park OH, AIAA Member. 
† Research Engineer, 21000 Brookpark Rd., Cleveland OH, MS77-1, AIAA Senior Member. 
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Wf     Fuel flow 

I. Introduction 
s preparation for the next generation of high-efficiency aircraft engines continues, concept engine models are 
developed to offer researchers a simulation for development efforts. One such engine model is the Advanced 

Geared Turbofan 30,000 (AGTF30). The AGTF30 is a non-linear model of a 30,000 lbf thrust class engine that 
combines features such as a fan gearbox, variable bleed valve (VBV), variable area fan nozzle (VAFN), a relatively 
small engine core, and an ultra-high bypass ratio configuration, with a full control system. This paper describes the 
creation of the control system utilized in the AGTF30. The control system design approach is meant to enable stable 
and safe dynamic system operation, and follows a traditional engine control approach. Many descriptions of gas 
turbine control design can be found in literature.1,2 This paper highlights the challenges that may be encountered with 
the features in this advanced engine design, and offers an example of a flexible engine test bed for advanced geared 
turbofan research. 
 The AGTF30 was implemented with MATLAB®/Simulink® and makes use of the Toolbox for the Modeling and 
Analysis of Thermodynamic Systems (T-MATS). T-MATS is an open source software‡ that facilitates the creation of 
thermodynamic systems that require external system solvers.3 This modeling approach utilizes an energy balance 
method and component performance tables (maps) to define the non-linear turbo-machinery system. Engine 
architecture and performance capabilities for the AGTF30 are based on a concept engine developed by NASA Glenn 
Research Center and represent an advanced geared turbofan.4,5,6,7 It should be noted that although development of the 
AGTF30 was based on the advanced geared turbofan in these references, it will not necessarily directly match them 
at any given operating point. Mismatch may occur because these are working models and are updated as new data 
become available. The AGTF30 simply offers a snapshot of the development of the advanced geared turbofan concept 
as of mid-2016. 

The AGTF30 control system is representative of a traditional gas turbine engine control design. Engine effectors 
include fuel flow, a VBV, and a VAFN. Position of the VBV and VAFN effectors are determined by schedules 
developed from engine design criteria. The fuel flow control structure consists of a proportional integral (PI) feedback 
controller, and contains typical limiting logic to avoid engine dangers such as compressor stall/surge, over 
temperature, over speed, and combustor blow out. 8,9 Engine operating point is correlated with a corrected fan speed 
(Nfc) request signal that is compared to the Nfc derived from sensed signals from the engine. Fan speed request is set 
based on power lever angle (PLA) and is designed to linearly relate the position of a throttle to an output thrust. 

Subsequent sections of this paper detail the development of the AGTF30 system. Specifically, discussion of the 
engine system architecture is located in Section II, followed by a description of the controller and how it was designed 
and integrated with the engine model in Section III. A mission performance analysis for the AGTF30 is presented in 
Section IV. Finally a summary of the paper is given in Section V. 

II. Engine System Architecture 
 The AGTF30 is the simulation of a conceptual 30,000 lbf thrust class gas turbine engine containing high pressure, 
low pressure, and fan shafts (Figure 1). The low pressure shaft and fan shaft are connected by a gearbox with a 3.1 to 
1 gear ratio, which acts to increase fuel efficiency and reduce gas turbine noise.6 The low pressure shaft is powered 
by a low pressure turbine (LPT) and drives the fan and low pressure compressor (LPC). A VBV acts to reduce the 
possibility for LPC stall (i.e., improve stall margin (SM)) by diverting air from the exit of the LPC to the engine bypass 
stream, effectively lowering the LPC exit pressure.1 The engine’s small core includes a high pressure compressor 
(HPC), a combustion chamber, and a high pressure turbine (HPT) in series. Flow moving through the core exits 
through a conventional nozzle, while engine bypass air exits through a VAFN. The presence of a VAFN has many 
advantages that include, but are not limited to, improved engine efficiency and noise reduction. 5,10  

                                                           
‡ https://github.com/nasa/T-MATS/releases , cited 10/2016 
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Figure 1. Block diagram of the AGTF30 engine. 

 
Performance characteristics of the AGTF30 can be seen in Table 1 for cruise and the hot day (27 degrees above 

standard day temperature) take off design conditions. From the table it can be observed that this is an ultra-high bypass 
ratio engine with a bypass ratio over 20, and demonstrates a thrust specific fuel consumption (TSFC) of less than 0.5 
lbm/hr/lbf. These operating conditions are maintained by assuming engine design practices that enable increases in 
levels of overall pressure ratio (OPR) to over 50 and turbine inlet temperature (TIT) to over 3100 R for extended 
periods of time. Overall, this describes a highly efficient engine that would most likely be mounted on commercial 
vehicles and used on missions similar to those performed by the Pratt and Whitney PW1000G or CFM International 
LEAP products. It should also be noted that in this document, the high pressure shaft speed, low pressure shaft speed, 
and fan shaft speed will be known as N2, N1, and Nf, respectively. 
 

III. Control System Architecture and Design 
 The control system for the AGTF30 engine was created around three main component types: the engine controller, 
the actuation system, and the sensors. The engine controller is modeled as sets of control algorithms. These algorithms 
determine the requested values for the engine control inputs: fuel flow, fan nozzle area, and LPC bleed valve position 

Table 1. AGTF30 performance characteristics 
Operating Condition  Air Flow, 

pps 
TSFC,  

lbm/hr/lbf 
Bypass 
Ratio 

OPR  TIT,  
oR 

Thrust, 
lbf 

Cruise at 35000 ft and 
0.8 MN 

813  0.4637  24  55  3150  6073 

Max Thrust at hot day 
sea‐level static (SLS) 

1724  0.1751  28  37  3170  28622 
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(expressed as a fraction of the full-open position). The sensors monitor the physical engine state and feed the values 
back to the controller. The actuation system represents the physical devices that act on the engine: fuel metering valve 
(FMV), VAFN, and VBV. A diagram of the overall model can be seen in  
Figure 3. The following subsections detail the design of each component. In these sections an operational envelope 
will be discussed. This envelope encompasses the environmental conditions in which the engine is expected to operate, 
as shown in Figure 2. 

A. Fuel system control modeling 
The engine fuel flow controller was constructed using the classical engine control architecture2, as shown in Figure 

4. With this controller structure, a PLA command is issued to the power management system, which translates the 
input to a requested value usable by the control system logic, in this case a fan speed request. A fan speed controller 
is then used to generate an ideal desired fuel flow or Wf request. Lastly, the final Wf demand is generated by 
comparing and adjusting the Wf request value to remain within the bounds of the fuel flow limiters, which act to 
maintain safe operation of the engine system.  

 
Figure 3. Diagram of overall AGTF30 engine system. 

 
Figure 2. AGTF30 operational envelope. 

 
Figure 4. Diagram of AGTF30 fuel control logic. 
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For the AGTF30, linearity in the relationship between PLA and engine output thrust is a requirement. 
Unfortunately thrust cannot be directly measured, therefore the power management was designed to use Nfc as a thrust 
surrogate. There are several sets of sensors that can act as a stand-in for thrust in control systems. For the AGTF30, 
the engine speed sensor is selected because of precise and robust operation. Also, it correlates fairly linearly with 
thrust for a simple engine, as shown in Figure 5; this figure shows the relationship between Nfc and net thrust as  
occurs at the sea-level static (SLS) ambient condition (an altitude of 0 ft and Mach number (MN) of 0). 

To create the power management logic, the engine was used to generate Nfc values at many different thrust levels 
throughout the operational envelope. 
These values were then organized into a 
schedule that could be used to determine 
an Nfc value for any combination of 
altitude, MN, and PLA. So for any 
combination of inputs, the appropriate Nfc 
is found, and then adjusted using ambient 
temperature to obtain a final fan speed 
(Nf) request value to be issued to the fan 
speed controller. 

Fan speed for the AGTF30 is 
maintained using a PI controller. Gains for 
this PI controller were developed using a 
two-step process.  First, linear models of 
the engine were generated for points 
around the operational envelope. Second, 
gains for a PI controller were tuned, using 
the Edmund’s method, for each generated 
linear model, to create a schedule of  

Figure 5. Relationship between Thrust and Nfc for the AGTF30. 

 
Figure 6. AGTF30 acceleration from idle to full power at SLS. Where (a) is the fan speed profile, (b) is the stall margin 
during the acceleration, (c) is the change in total and core only mass flow, and (d) is the LPC compressor operation line. 
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controller gains. The Edmund’s method is a controller gain tuning technique that utilizes the least squares method to 
fit the proposed closed-loop system architecture to an ideal closed-loop system. 1, 11 In this case, the response of the 
linearized engine system with a PI controller was fit to an ideal second order transfer function by adjusting the 
controller gains. This second order transfer function was selected such that the gain and phase margins were greater 
than 6dB and 45o, respectively.2  

Once the controller fan speed request is generated and PI fuel controller is tuned, the resulting fuel flow request is 
compared against a series of limits to determine the final fuel flow demand. Each limiter uses a PI controller and can 
be considered either steady-state or dynamic. Steady-state limits act to restrict engine operation during continuous 
operation. Dynamic limits act to restrict engine operation during transient operation. For this engine simulation, 
steady-state limits of maximum temperature at station 45 (T45) (as surrogate for temperature at station 4), Nf, N2, 
pressure at station 3 (Ps3), and minimum Ps3 were chosen. In this case the T45 limit was judged as the critical 
maximum limit and the Nf, N2, and Ps3 limits were inferred from T45 operational requirements. The minimum Ps3 
limit was set at a level to maintain a reasonable idle thrust. Idle thrust level can change drastically with changes in 
engine architecture and is based on acceleration, temperature, and minimum stall margin requirements,12 and was set 
at roughly 16% maximum thrust.  In addition to the steady-state limiters, the controller contains two Wf/Ps3 limiters 
designed to keep engine acceleration within acceptable bounds. The max Wf/Ps3 ratio was set to limit acceleration 
with the goal of preventing stall while also allowing for acceleration from idle to 95% of takeoff power in 5 seconds. 
Values were determined by using the steady-state Wf/Ps3 values as a baseline, and increasing them until the 
acceleration requirement was met while also protecting arbitrary LPC and HPC stall margin limit of 8%. An 
acceleration from idle to full power at sea level and 0 MN can be seen in Figure 6. In this transient, a PLA command 
starts at idle (0%) and is raised to full power (100%) at 20 seconds (plot a). Stall margin in the LPC and HPC drop, 
but remain positive and above 8% (plot b). At 23 seconds the LPC stall margin can be seen to rise as the core air flow 
begins to increase more rapidly with respect to bypass airflow (plot c), and the LPC operation moves away from the 
stall line (plot d).  The min Wf/Ps3 limit is typically set to limit deceleration with the goal of preventing loss of 
combustion in the burner. The AGTF30 model does not have the fidelity to predict loss of combustion events, therefore 
the min Wf/Ps3 limit was set mainly to improve robustness in model convergence during decelerations.  

Transition between power management and limit logic is managed by an integral windup protection-based 
bumpless transfer logic. This logic was developed to seamlessly transition between the main fuel controller and the 
limit controllers. Because each controller contains an integrator (as part of the PI controller architecture), limiting 
integrator windup when a controller is not in use becomes paramount. A simple yet effective method for preventing 
integrator windup is to feed the final system demand (in this case Wf) back to the input of the controller, comparing 
this demand with the output of the controller, and then reducing the input to the integrator proportionally, as shown 
Figure 7. For this application, the windup gain was selected using the relation found in literature,13 shown in Eqn. (1). 

݌݁ݐܵ݁݉݅ܶ݊݋݅ݐ݈ܽݑ݉݅ܵ ∗ ݊݅ܽܩ_݌ݑܹ݀݊݅ ∗ ݊݅ܽܩ_ݎ݋ݐܽݎ݃݁ݐ݊ܫ ൏ 1 (1) 
 
  

Figure 7. Notional diagram of bumpless transfer logic for AGTF30 controller transitioning. 
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B. Variable area fan nozzle control modeling 
 The VAFN is controlled to produce optimal fan performance at all operating points by maintaining a specific 
pressure ratio (PR) given a certain corrected flow (Wc) and Nfc. Optimal efficiency values were determined from the 
fan performance map (shown in Figure 8) and are represented as the fan operating line. It should be noted that map 

values below Nfc of 0.5 (50% of the reference fan speed) have been extrapolated from the other values on the map. 
During operation, the VAFN area is adjusted to maintain the ideal fan operating line. Decreases in area leads to an 
increase in fan pressure ratio (PR), and vise-versa. To generate a schedule for the VAFN required area, the AGTF30 
engine was run to steady-state at many different operating points, while VAFN was used to force the fan to the most 
efficient operating line. With these data, a table was created to relate VAFN position to MN and Nfc, as shown in 
Figure 9. In this figure it can be seen that at low MN the VAFN opens as Nfc is lowered, reducing the fan PR to avoid 
fan stall. In contrast, at high MN the VAFN is closed as Nfc is lowered, increasing PR to avoid fan choking. Current 
research into VAFN actuation has estimated that the maximum area reduction ratio (nozzle maximum scheduled area 
compared to the minimum scheduled area) achievable for nozzles is considered to be around 40%.14 This maximum 
area was set taking into account only the most critical operating considerations. These are: potential fan stall during 
an idle to full power transient at MN = 0 and efficiency for cruise condition; and at high MN and high Nfc. Because 
the minimum area within these critical operating conditions is about 4500 in2, the maximum area was set to 8000 in2. 
Testing confirmed that stall margin with the limited area was acceptable for the associated speed and MN range. 
Larger area reductions beyond the 40% limit are also included to prevent the fan from choking. Fan choke is a less 
critical consideration, however operation under choke conditions can cause the simulation to become unstable so the 
conditions must be addressed in the model. These additional area reductions (areas below 4500 in2) are beyond the 
capability of current designs and as such, prevention of fan choking will need to be examined further to explore the 
feasibility of a larger than 40% area reduction ratio or to research alternatives to avoid choking the fan, such as 
additional variable geometries or bleed flows. For the purposes of this futuristic concept engine model, this idealized 
VAFN throat area was deemed acceptable with the understanding that the model will be updated as more research 
becomes available. 
 

Figure 8. AGTF30 fan performance map with operating line. 
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Figure 9. VAFN area vs Nfc and MN. 

C. Variable bleed valve control modeling 
 The VBV is controlled to prevent LPC stall margin from going below 10% at steady-state. Similar to the VAFN, 
a schedule was developed to relate VBV position (fraction of full-open) to Nfc and MN within the operational 
envelope. The VBV schedule can be seen in Figure 10. At high Nfc values the LPC stall margin is close to 40%. As 
Nfc is decreased, the operating line moves closer to the stall line. At an Nfc of 1700 rpm, the VBV opens as stall 
margin approaches 10%. Once the VBV opens, it must continue opening at an increasing rate with respect to 
decreasing Nfc to maintain stall margin greater than 10%, as shown by the comparison of stall margin and VBV 
position in Figure 10. 

 
Figure 10. VBV and LPC stall margin vs. Nfc steady-state operational points at 35000 ft and 0.8 MN. 
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D. Actuator modeling 
 The actuator simulations have been constructed using simple first order models. The FMV and VBV actuators are 
represented with common dynamics defined by unity gain and a time constant as found in the literature.1 The VAFN 
actuator is also modeled using a first order transfer function, however dynamics were defined based on a simple study. 
As with VAFN area, research in the actuation system is ongoing, and current VAFN research suggests potential use 
of shape memory alloys with response rates potentially too slow for required engine transients.5 To determine the 
VAFN response time for the AGTF30 and a theoretical minimum requirement, the model was run with various VAFN 
settling times (Ts). These runs consisted of an acceleration from idle to full power at 10s followed by a deceleration 
from full power to idle at 70s, as shown in Figure 11. VAFN actuator settling times of 0.8s and 4s were chosen to 
allow close tracking of the controller demanded (ideal) area and to maintain a settling time comparable with the 5s 
acceleration requirement mentioned above, respectively. Values of 9.8s, 25s, and 45s were chosen based on plausible 
shape memory alloy slew rates.5,12 In plot a the VAFN area for each run is shown, and it can be seen that the VAFN 
area is delayed as Ts is increased. Plots b and c show the effects of increasing VAFN delay as compared with ideal 
actuation. In plot b it may be observed that as VAFN delay is increased, fan speed during acceleration is increased; 
and conversely as fan speed is decreased, initially upon deceleration. This effect is caused by lower than designed 
pressure ratio during accelerations and higher than designed pressure ratio during decelerations, as the VAFN area is 
delayed in arriving at the designed area value. The additional effect of this delay is shown in the thrust (plot c), where 
there is loss of thrust during both accelerations and decelerations. This loss of thrust offers the main limitation of 
increasing the settling time of the VAFN, with Ts of 25s and 45s causing the engine to fail its requirement of 5s 
acceleration from idle to full power. Stall margin is also affected as shown in plot d, with lower stall margin during 
decelerations. Although this margin is lower, fan stall margin does not dip below 0, so it is deemed acceptable with 
all settling times tested. From this simple analysis, it was determined that the 9.8s Ts would be the minimum 
requirement for the VAFN actuation system with a baseline controller. If this performance cannot be met, advanced 
controls methods, such as model based engine control,5 may be used to relax this requirement. Because the AGTF30 
engine is a concept engine to be utilized for general research activities and due to the uncertainty of the actuator 
settling time, it was decided to proceed with an ideal settling time actuator. This faster response was deemed acceptable 
until more research on a feasible VAFN actuation system could become available.  

 
Figure 11. AGTF30 acceleration from idle to full power then deceleration from full power to idle. 
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E. Sensor modeling 
 All sensors are modeled with first order transfer functions defined by a gain and time constant. The gains for each 
sensor type were set to unity, and the time constants were determined based on general values found in literature.1 As 
with the actuator models, the sensor models are meant to achieve a simple baseline of operation, and additional fidelity 
requirements will be assessed at a future date. The time constants for the sensors and actuators considered in this 
design are listed in Table 2.  
 
Table 2. AGTF30 list of sensors and actuators. Note, fan shaft speed is derived from the low pressure shaft 
through the gear ratio 

Sensors Type Location Time Constant (s) 
Pressure Static Ambient 1/25 
Pressure Total Station 2 1/25 
Pressure Total Station 25 1/25 
Pressure Static Station 3 1/25 
Pressure Total Station 5 1/25 

Temperature Total Station 2 1/1.43 
Temperature Total Station 25 1/1.43 
Temperature Total Station 3 1/1.43 
Temperature Total Station 45 1/1.43 
Shaft speed  Low pressure shaft 1/50 
Shaft speed  High pressure shaft 1/50 

Actuators   Time Constant (s) 
Fuel metering valve  Station 4 1/10 
Variable bleed valve  Station 25 1/23 

Variable area fan nozzle  Station 19 1/5 
 

IV. Mission performance analysis 
 To demonstrate the capabilities of the 
AGTF30 engine simulation, a full flight 
mission profile was simulated. This flight 
profile was taken from a public source and 
contains mission data recorded onboard a 
regional commercial jet.15 Traces of 
altitude, MN, and PLA are detailed in 
Figure 12 and show a typical 6000 s flight, 
including a take-off and landing. In the 
trace, take-off can be seen at about 800 s, 
followed by a climb to roughly 30,000 ft 
ending at 2000 s. At 4000 s a descent takes 
place with the aircraft landing at about 5250 
s. Parameters of interest for the mission are 
shown in Figure 13. The variable geometry 
effectors (the VBV and VAFN) adjust from 
idle to high power operation then back. Engine performance criterion TSFC is around 0.2 lbm/hr/lbf before take-off 
then moves to around 0.45 lbm/hr/lbf at cruise before returning to 0.2 lbm/hr/lbf as the engine drops altitude and lands. 
Parameter Ps3 increases sharply during take-off, reduces as altitude increases, and then fluctuates when the engine 
comes in for a landing as altitude drops and PLA is adjusted. Parameters T45, N1, and N2 largely follow PLA. Stall 
margins for the HPC and LPC show continuous operation below the operational stall line by at least 10%. The values 
demonstrate a typical engine mission transient and show the AGTF30’s ability to operate safely and stably at all points. 

Figure 12. Trace of common engine mission 
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Figure 13. Mission profile AGTF30 parameters. 
 

V. Summary 
This paper details the design of the controller for the Advanced Geared Turbofan 30k lbf (AGTF30) simulation, a 

conceptual geared turbofan engine created to represent an advanced/next generation aircraft engine. Special features 
of the AGTF30 include a variable area fan nozzle, variable bleed valve, gearbox connected fan, relatively small engine 
core, and ultra-high bypass ratio. The AGTF30 simulation was created in MATLAB/Simulink using the Toolbox for 
the Modeling and Analysis of Thermodynamic Systems (T-MATS) and is intended to provide a dynamic simulation 
of an advanced gas turbine that is operational throughout the full flight envelope. The control system for the AGTF30 
follows a typical architecture with variable geometries controlled using scheduled values, and fuel flow controlled 
with the use of fan speed feedback, with sets of limiters that maintain safe operation. Full envelope control design was 

0 1000 2000 3000 4000 5000 6000

V
B

V
,

 fr
ac

tio
n 

o
pe

n

0

0.5

0 1000 2000 3000 4000 5000 6000

V
A

F
N

 a
re

a,
 in

2

4000

6000

8000

0 1000 2000 3000 4000 5000 6000

F
ne

t, 
lb

f

104

0

1

2

0 1000 2000 3000 4000 5000 6000

T
S

F
C

,
 lb

m
/h

r/
lb

f

0

0.5

0 1000 2000 3000 4000 5000 6000

N
1,

 r
pm

2000

4000

6000

0 1000 2000 3000 4000 5000 6000

N
2,

 r
pm

104

1.5

2

0 1000 2000 3000 4000 5000 6000

P
s3

, p
si

a

200

400

600

0 1000 2000 3000 4000 5000 6000

T
45

, 
°R

1000

1500

2000

2500

Time, s
0 1000 2000 3000 4000 5000 6000

LP
C

 S
M

, %

0

20

40

Time, s
0 1000 2000 3000 4000 5000 6000

H
P

C
 S

M
, %

0

20

40



12 
 

American Institute of Aeronautics and Astronautics 
 
 

accomplished by linearizing the engine model, then tuning sets of proportional integral controller gains, or by setting 
control schedules based on design criteria at each operational point. Review of the resulting parameters highlight the 
variable area fan nozzle design requirements for both nozzle area and nozzle slew speed may not be realizable at this 
time. A short study of the effects of different actuator slew rates with the baseline fan speed controller was conducted 
and minimum requirements for the actuator were detailed. Implementation of an idealized nozzle design was 
completed with the understanding that the model will be updated as future research into nozzle construction and/or 
advanced nozzle control is completed. Finally, a mission performance analysis was conducted on the AGTF30 engine 
system to demonstrate that dynamic system requirements are met. Simulation results show that the AGTF30 engine 
platform is a fully functional and dynamic engine platform that is capable of being used for advanced controls research 
on a next generation concept engine.  
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